

Excel Technology Co Pty Ltd

Electrical Characteristics & Functions

of

Inductive Loops

DISCLAIMER

Excel Technology Co Pty Ltd (XL) reserves the right to make changes to the technology described in this document without notice and advises its clients to obtain the latest version of the relevant information prior to placing an order. Excel Technology Co Pty Ltd warrants its products to the specification detailed herein in accordance with standard conditions of sale, client specification, and conditions imposed through government legislation and is not liable for functional performance, operational performance or any damage consequential or otherwise resulting from the use of the XL product.

Testing and product control techniques are utilised to the extent that Excel Technology Co Pty Ltd deems necessary to support the relevant specification and warranty. Excel Technology Co Pty Ltd acknowledges the proprietary information provided by Third Party component suppliers however, Excel Technology Co Pty Ltd assumes No Responsibility for the use of any other circuit or device other than the circuitry embodied on Excel Technology Co Pty Ltd numbered engineering drawings and on Excel Technology Co Pty Ltd circuit cards as identified according to the requirements of the Circuit Layouts Act 1989 (Australia) and used in accordance with the relevant equipment instructions contained herein.

Excel Technology Co Pty Ltd grants the user/client rights to reproduce any of the documents contained herein but not subject to conditions of 'Non-Disclosure', providing such reproduction is conducted with no alteration to any material written, drawn or otherwise reproduced and/or contained in this document.

Original Publication Date 2007:05:23\100.3 Rev A ENGNOTE_INDUCTIVE LOOPS_A

Inductive Loops

Actuation - a simplified description

The 'Loop based vehicle detector' uses inductive loop sensors (a coil of wire) located in the roadway to detect vehicles. The in-pavement loop is an extension of an electronic circuit which detects changes in electrical characteristics of the loop when a metal mass transgresses the loop. Each loop is scanned individually for a change in inductance resulting from the interaction between the loops electromagnetic field and the 'eddystone' current fields in the metal mass of a vehicle transgressing the in-pavement loop field. A change of frequency resulting from a change of inductance signifies a mass of metal i.e. a vehicle is passing within its field. If the change is above a threshold determined from the sensitivity setting for the loop, an actuation is signalled.

The figure below displays the frequency shift when a truck is travelling over a loop:

Therefore the characteristics critical to loop performance are loop shape, loop size, inductance, resistance, tuned frequency, feeder length and the location of the loop. This document considers these aspects however the reader should also consult the following Engineering application notes for a broader interpretation of this complex process.

ENGNOTE_Error_Analysis ENGNOTE_Loop_Field_Analysis ENGNOTE_Q_Description ENGNOTE_Xtalk ENGNOTE_Loop_feeder_length The document "Loop Format Analysis (1980) and focussed on Traffic Interse

The document "Loop Format Analysis.pdf" – original study by Morris, Dean and Hulscher while dated (1980) and focussed on Traffic Intersection loops provides an informed perspective on loop shape/configuration.

Summary information relevant to these specific topics is detailed in this document – a more detailed description and analysis is found in each document.

Electrical Characteristics

The typical motorway loop used for incident detection and vehicle classification is a 2mt square loop with 4 turns. The ENGNOTE FIELD ANALYSIS document describes the performance of a square loop and a rectangular loop in relation to the field created and its inherent ability to interact with 'eddystone' fields located in the metal vehicle.

Loop Length	Loop Width	Number of turns	Resistance	Inductance
2mts	2mts	3	0.1 - 0.25	330uhenries
2mts	2mts	4	0.2 - 0.25	380uhenries

It is desirable for optimum classification performance to install a loop (combined with feeder) to have a measured 'Q' between 15 and 30. The inductance may vary according to the road base, temperature and climatic conditions (water on the road).

NOTE Investigation has revealed that 'Quadripole loop formats' are unsuitable for motorway detection due to their 'tight parallel electromagnetic field" which may induce detection dropout when a high-bed vehicle passes over the loop ie., counted as 2 or 3 vehicles. :

Loop properties must be within the following ranges:

- 50μ H 700μ H loop inductance, (100 200μ H recommended, depending on feeder length.)
- Q between 10 and 30 @ 40kHz, (20 recommended.)

Refer to Addendum A - Determining Loop Inductance for further information concerning the calculation of inductance.

Loop 'Q'

The Q of the loop determines the loop's performance:

$$Q = \frac{2\pi \times \text{frequency (Hz)} \times \text{inductance (H)}}{\text{resistance }(\Omega)}$$

Loops with lower Q will be less sensitive, and therefore won't detect a vehicle as quickly. While this will not adversely affect speed measurements, it will affect the length measurements of smaller cars. Loops with long feeder cable lengths may have a higher resistance and therefore lower Q. To compensate these loops should be given a higher inductance (more turns). For existing sites with low Q loops, using the most sensitive detector setting and adjusting the loop length in software will give more accurate measurements. See Section: Error Analysis for more information on adjusting for low Q loops. **Refer to** ENGNOTE_Q_Description for further information.

Feeder Length

For every meter of feeder, you would increase the "feeder" Inductance (Microhenries) by 0.62, therefore, for a feeder length of 500m the inductance in the feeder will be approximately 300 microhenries (a little over). Feeder resistance is a significant contributor to reducing 'Q' which determines the performance of the loop. Feeder resistance increase by about .70hms per 50 metres of installed feeder cable. Refer to the following table for information concerning these cable attributes.

The detection performance implications for feeder inductance in this example means that the loop itself has to exceed 300 Microhenries otherwise the feeder induction will cancel out the loop induction. A final loop inductance (after the feeder 'loss' is taken into consideration) should be approximately 180 to 320 microhenries. This varies according to the number of turns, size of loop and to some extent the road sub-base. The Engineering note related to loops provides a more in-depth analysis of the relationship between loops and inductance.

Length of Feeder	Increase Resistance	Increase inductance	Decrease 'Q'
50Mts	0.7ohms	33uhenries	-3
100Mts	1.40hms	67uhenries	-5
150Mts	2.0ohms	100uhenries	-7
200mts	2.7ohms	133uhenries	-9
"ON 1	0		

"Q" decrease primarily as a consequence of resistance

Refer to ENGNOTE_Loop_feeder_length for further information.

Depth of Loop

Vehicle detection utilizing loops is based on electromagnetic field interaction and the fundamental rule in electromagnetic field 'force' or degree of interaction is the $1/d^2$ relationship whereby a change in distance has an exponential effect on strength of the field.

Field analysis indicates that in order to detect trucks with loops buried at say 450mm and the main axels of the trucks sitting higher than regular cars, it has been observed that a loop with an output of at least 500 Microhenries is required.

While the calculations indicate this can be achieved within the given size of the roadway by installing; 3M wide by 20m long and 5 turns of wire in the loop head. This is not feasible as the loop size is governed by lane width in motorway applications.

The standard 4 turn two metre square Australian Motorway incident detection loop is approximately 230 Microhenries (will vary with road base). Removing or adding windings produces a fixed multiple change, therefore additional turns will compensate for the depth. It is desirable however that the maximum depth be 20cms.

Refer to ENGNOTE_LOOP_FIELD ANALYSIS for further information.

Cross Talk

When in-pavement loops operate at very similar frequencies a vehicle actuation can be 'coupled' to another detector input (ghost vehicle or false trigger results). This will only occur when the loop frequencies are the same (or very similar) and the two loops are active at the same time <u>and</u> the unshielded wires are in close proximity ie., same road slot. This can not occur when a single 8 channel scanning detector card is used as two loops will not be excited simultaneously as each channel is excited in sequence from 1-8. However when more than one card is used, the probability of a loop from each card being excited simultaneously increases as two or more cards are exciting loops in a cyclic rate around 250-300microseconds per channel. Good design practices ensures that the unshielded loop tails are not in close proximity however if loop tails are in close proximity then there is a likelihood that energy will be coupled and Xtalk will occur.

There are a number of postulations on eliminating XTalk including varying a fixed capacitance value, software control eliminating simultaneous excitation however the most appropriate method is site design. Best work practice site design eliminates Xtalk problems by ensuring feeder wires are not located in the same slot inadvertently or otherwise during installation.

Refer to ENGNOTE_XTalk for further information on the effectiveness of these actions in eliminating XTalk between loops.

Loop Configurations / Connection

Paired Loops

To measure vehicle and traffic values, two loops are required for each lane. The loops must be the same size and positioned a set distance apart longitudinally in the lane.

If one loop in the loop pair for a lane stops functioning, the vehicle will still be counted however speed and length will be 0. If both loops stop functioning, no vehicles can be counted.

Speed

Vehicle speed is calculated using the spacing of the loops in the loop pair and the time between leading loop and lagging loop actuation for a vehicle travelling in the lane:

Two speed measurements are calculated. The first uses the time between actuation of the leading loop and actuation of the lagging loop and the second uses the time between clearing of the loops. The reported vehicle speed is an average of the two measurements.

Accuracy:	\pm 1.5 km/h @ 5m loop spacing.
Precision:	1 km/h

Therefore the measurement entered into the detector indicating spacing between the loop pair is critical to the accuracy of the speed measurement

Number of Lanes

The LVD supports up to 16 lanes. The number of lanes must be set before use, as it determines which lanes are active and which lanes record data.

Loop Connection

Loops must be connected to the detector in sequential pairs. The first loop in the pair must connect to loop input 1, 3, 5 or 7, and the second loop in the pair must connect to the immediate next loop -2, 4, 6 or 8 respectively. This is the *forward* direction.

Lanes can be connected in *reverse*, i.e. lagging loop then leading loop. However this is not recommended. For reversible lanes the lane direction can be specified in software as forward or reverse.

Site Orientation

For multiple installations, detector sites should be consistently configured such that lane 1 is always on the same side of the road. This makes interpreting results much easier.

Example 6 Lane Configuration

The diagram below shows the preferred layout of loops for a 6 lane system. The arrows indicate the direction of travel of vehicles in the lanes (left hand drive).

Note: While 'cross-talk' minimisation software is incorporated in the loop detector, loop feeders for loops that are connected to different detector cards as a general practice should NOT return to the cabinet in the same slot.

Addendum A - Determining Loop Inductance

Simple Formulae for calculating Inductance Calculating Inductance

 $\frac{(1+w) \times (n^{2}+n)}{2} = \mu H \text{ (Micro-henries)}$ l = Length traveled through or Length along lane, in feet (ft) w = Loop Width Across lane, in feet (ft) n = Number of TurnsEg. l = 1800 mm = 5.905494 ft w = 1200 mm = 3.96996 n = 4 $(6+4) \times (4^{2}+4)$ $2 = 100 \mu \text{H}$

A more complex perspective for calculating Inductance

CALCULATING INDUCTANCE

Several simplified formulas are available for calculating the approximate inductance of an inductive-loop detector.

The simplified formulas provide acceptable accuracy for the self inductance of multiturn, rectangular, quadrupole, and circular loops, which have a large area relative to the conductor spacing. The approximations compare favorably with a range of measured inductive-loop inductance values.

The following table has been reprinted from the Traffic Detector Handbook: 3rd Edition Volume 1 Publication Number:FHWA-HRT-06-108 May 2006. Inductance and quality factor for several numbers of turns of wire were calculated using the mutual coupling formula discussed later in this chapter.

Turns of #14 AWG wire in Ioop	Lead- in cable type, Belden	Lead- in cable length (ft)	Cable wire gauge (AWG)	Total parallel capac. ([⊥] F)	Series Ioop induct. (^{⊥/} H)	Lead-in cable induct <u>†</u> (^{⊥/} H)	Total series induct. (^{⊥/} H)	Loop resist. <u>*</u> (⑪)	Lead-in cable resist.†, <u>**</u> (Ŵ)	Total series resist. (⁽¹⁰⁾)	Loop system Q	Loop system loaded Q (k ⁽¹⁾)
3	8718	100	12	0.674	74	20	94	0.25	0.62	0.87	14	12
3	8720	100	14	0.670	74	21	95	0.25	0.80	1.05	11	10
3	8719	100	16	0.670	74	21	95	0.25	1.00	1.25	10	9
4	8718	100	12	0.437	125	20	145	0.33	0.62	0.95	19	14
4	8720	100	14	0.434	125	21	146	0.33	0.80	1.13	16	13
4	8719	100	16	0.434	125	21	146	0.33	1.00	1.33	14	11
5	8718	100	12	0.312	186	20	206	0.42	0.62	1.04	25	15
5	8720	100	14	0.306	186	21	207	0.42	0.80	1.22	21	14
5	8719	100	16	0.306	186	21	207	0.42	1.00	1.42	18	12
5	8718	1,000	12	0.172	186	200	386	0.42	6.20	6.62	7	5
5	8720	1,000	14	0.160	186	210	396	0.42	8.00	8.42	6	5
5	8719	1,000	16	0.160	186	210	396	0.42	10.00	10.42	5	4

Table 2-7. Influence of lead-in cable type and length on Q.

Loop size is 6×6 ft (1.8 x 1.8 m). Excitation frequency is 20 kHz.

* Measured series resistance of loop 3 ft (0.9 m) above the laboratory floor.

** 8719 resistance value estimated.

LOOP SYSTEM INDUCTANCE CALCULATIONS

Inductance attributed to the lead-in cable is added to wire loop inductance at the rate of 21 μ H per 100 ft (30 m) of #14 AWG lead-in cable. For example, a 6- x 6-ft (1.8- x 1.8-m) rectangular loop should have three turns, according to Appendix C, and an inductance of 74 μ H. If the lead-in cable is 200 feet (61 m) in length, the total inductance is

(2-14)

The inductance *L* of two or more loops connected in series is additive such that $L = L_1 + L_2 \pm 2M$, where L_1 and L_2 represent the inductance of each of the individual series-connected loops, *M* is the mutual inductance between the two loops, and the sign of *M* is positive if flux is increased by current flowing in the same direction in the closest spaced loop wires.

The mutual inductance is negligible when the loops are separated by a large distance. In this case, $L = L_1 + L_2$, i.e., the loops are connected in series producing maximum loop inductance.

© Copyright Excel Technology Co Pty Ltd January 2007

If the loops are connected in parallel, then the combined inductance is calculated as $1/L = 1/L_1+1/L_2$. For example, the combined inductance of two 6- x 6-ft (1.8- x 1.8-m) loops of three turns each connected in parallel is given by

$$\frac{1}{L} = \frac{1}{74} + \frac{1}{74} = \frac{2}{74}$$
 (2-15)

Thus, $2L = 74 \ \mu H$ and $L = 37 \ \mu H$.

Thus, parallel connection of loops reduces the inductance. Good design practice requires that the combined loop inductance be greater than the lower limit of 50 $\,^{\mu}$ H. Therefore, the parallel connection described above is not suitable as a vehicle sensor.

In some cases, both series and parallel connections of inductive loops are desirable. Consider, for example, four 6-x 6-ft (1.8- x 1.8-m) three-turn loops installed 9 ft (2.7 m) apart to provide detection in a left-turn lane. Three possible types of connections are shown in Figure 2-8. Connection in series produces an inductance of 4 x 74 = 296 μ H. Parallel connection produces only 18.5 μ H (*4L* = 74 μ H, *L* = 18.5 μ H). A series-parallel configuration, where the upper two loops are connected in series and the bottom two loops are connected in series, produces two loop pairs, which are then connected in parallel to give a combined inductance of 74 μ H.

Loop Inductance - Schedule of Calculated versus Measured

A SHORE	Table I	I. Con	mparison	of Calcu	lated and	Wiedsu	rea Loop	. aram		
trupoly an	Fo	Mea	sured L	Ca	lculated L		Measu	red Q	Calcul	ated Q
(KHz)	(J	(H)		(µH)					
	20	73	3.9		74.4	1. P.F.	31	.7	3	0.4
	25	73	3.9		74.4		35	.5	3.	3.9
	35	74	1.2		74.3		42	7	3	8.8
	40	74	1.3		74.3		44	.6	4	0.6
	50	74	1.7		74.3		45	.5	4	3.7
	55 60	74	1.9 5.3		74.3		44	.9	4	4.9
Calcul	ated Loop B	aramata	Contra-	1074-1413	YE W	dailfely to	and and	n and	Km Karso	
Calcu	ated Loop P	aramete								
	American w	ire Gau	ge, AWG:	14	tang long tang long tang long tang tang tang tang tang tang tang ta	Sector Se				
o angot bo si cango tana anda ango	1 Tu	m	Table 2T	III. Rect	angular I	.oop Pai	4 Tu	ILLU	51	m
	and the second stand that we have		- 11 - 11 - 11 - 40 - 1		States - Salar					
in seconda		C L	Test and	Quelie	Industance	Quality	Industran	Quality	Inductance	Qualit
Wire Gauge (AWG)	Inductance (µH)	Quality Factor	Inductance (µH)	Quality Factor	Inductance (µH)	Quality Factor	Inductance (µH)	Quality Factor	Inductance (µH)	Quali Facto
Wire Gauge (AWG) 12	Inductance (µH) 10.13	Quality Factor 19.68	Inductance (µH) 35.22	Quality Factor 29.88	Inductance (µH) 73.28	Quality Factor 37.13	Inductance (µ H) 123.14	Quality Factor 42.65	Inductance (µH) 184.00	Quali Facto 47.0
Wire Gauge (AWG) 12 14	Inductance (µH) 10.13	Quality Factor 19.68	Inductance (µH) 35.22 35.96	Quality Factor 29.88 24.06	Inductance (µH) 73.28 74.39	Quality Factor 37.13 30.40	Inductance (µ H) 123.14 124.62	Quality Factor 42.65 35.41	Inductance (μH) 184.00 185.85	Quali Facto 47.0
Wire Gauge (AWG) 12 14	Inductance (µH) 10.13 10.50	Quality Factor 19.68 15.61	Inductance (μH) 35.22 35.96	Quality Factor 29.88 24.06	Inductance (µH) 73.28 74.39	Quality Factor 37.13 30.40	Inductance (µ H) 123.14 124.62	Quality Factor 42.65 35.41 21.20	Inductance (μH) 184.00 185.85 242.96	Quali Facto 47.0 39.5
Wire Gauge (AWG) 12 14 14	Inductance (µH) 10.13 10.50 63.45	Quality Factor 19.68 15.61 11.59	Inductance (µH) 35.22 35.96 89.16	Quality Factor 29.88 24.06 14.11	Inductance (µH) 73.28 74.39 128.18	Quality Factor 37.13 30.40 17.51	Inductance (µ H) 123.14 124.62 179.61	Quality Factor 42.65 35.41 21.20	Inductance (µH) 184.00 185.85 242.96	Quali Facto 47.0 39.5 24.80
Wire Gauge (AWG) 12 14 14* 14**	Inductance (μH) 10.13 10.50 63.45 351.70	Quality Factor 19.68 15.61 11.59 1.77	inductance (μH) 35.22 35.96 89.16 853.20	Quality Factor 29.88 24.06 14.11 4.90	Inductance (μ H) 73.28 74.39 128.18 1433.69	Quality Factor 37.13 30.40 17.51 9.99	Inductance (µ H) 123.14 124.62 179.61 1985.51	Quality Factor 42.65 35.41 21.20 17.24	Inductance (µH) 184.00 185.85 242.96 2464.16	Quali Facto 47.0 39.5 24.8 26.7
Wire Gauge (AWG) 12 14 14* 14** 16	Inductance (μH) 10.13 10.50 63.45 351.70 10.85	Quality Factor 19.68 15.61 11.59 1.77 11.57	inductance (μ H) 35.22 35.96 89.16 853.20 36.68	Quality Factor 29.88 24.06 14.11 4.90 18.10	Inductance (μ H) 73.28 74.39 128.18 1433.69 75.46	Quality Factor 37.13 30.40 17.51 9.99 23.25	Inductance (µ H) 123.14 124.62 179.61 1985.51 126.04	Quality Factor 42.65 35.41 21.20 17.24 27.50	Inductance (μH) 184.00 185.85 242.96 2464.16 187.62	Quali Facto 47.0 39.5 24.80 26.70 31.09
Wire Gauge (AWG) 12 14 14* 14* 16	Inductance (μH) 10.13 10.50 63.45 351.70 10.85 11.20	Quality Factor 19.68 15.61 11.59 1.77 11.57 8.11	Inductance (μ H) 35.22 35.96 89.16 853.20 36.68 37.37	Quality Factor 29.88 24.06 14.11 4.90 18.10 12.84	Inductance (μ H) 73.28 74.39 128.18 1433.69 75.46 76.50	Quality Factor 37.13 30.40 17.51 9.99 23.25 16.73	Inductance (μ H) 123.14 124.62 179.61 1985.51 126.04 127.42	Quality Factor 42.65 35.41 21.20 17.24 27.50 20.05	Inductance (μH) 184.00 185.85 242.96 2464.16 187.62 189.34	Qualit Facto 47.02 39.51 24.86 26.76 31.09 22.95
Wire Gauge (AWG) 12 14 14** 16 18 *Transmiss **Transmiss **Transmiss **Transmiss **Transmiss **Transmiss	Inductance (μH) 10.13 10.50 63.45 351.70 10.85 11.20 ion Line mer Loop 0kHz, other p II inducance : esstance is in Transformer P.	Quality Factor 19.68 15.61 11.59 1.77 11.57 8.11 arameters and qualiticituded) arameters	Inductance (μH) 35.22 35.96 89.16 853.20 36.68 37.37 s given for T ty factors in	Quality Factor 29.88 24.06 14.11 4.90 18.10 12.84 able II Table III are	Inductance (μH) 73.28 74.39 128.18 1433.69 75.46 76.50	Quality Factor 37.13 30.40 17.51 9.99 23.25 16.73 ues (i.e., the	Inductance (µ H) 123.14 124.62 179.61 1985.51 126.04 127.42	Quality Factor 42.65 35.41 21.20 17.24 27.50 20.05	Inductance (µH) 184.00 185.85 242.96 2464.16 187.62 189.34	Qualii Facto 47.0: 39.51 24.86 26.76 31.09 22.95
Wire Gauge (AWG) 12 14 14** 16 18 *Transmiss **Transmiss Note: 1.2 2. A 7.3.1	Inductance (μH) 10.13 10.50 63.45 351.70 10.85 11.20 ion Line mer Loop 0kHz, other p II inductance i II inductance i Primary Primary	Quality Factor 19,68 15,61 11,59 1,77 11,57 8,11 arameters Resistanc Capacitar	Inductance (μH) 35.22 35.96 89.16 853.20 36.68 37.37 s given for T ty factors in s c (OHMS) here (PICOFA	Quality Factor 29.88 24.06 14.11 4.90 18.10 12.84 able II Table III are	Inductance (μH) 73.28 74.39 128.18 1433.69 75.46 76.50 apparent value = 1 = 10	Quality Factor 37.13 30.40 17.51 9.99 23.25 16.73 ues (i.e., the	Inductance (µ H) 123.14 124.62 179.61 1985.51 126.04 127.42 e effect of lo	Quality Factor 42.65 35.41 21.20 17.24 27.50 20.05	Inductance (µH) 184.00 185.85 242.96 2464.16 187.62 189.34	Qualii Facto 47.0: 39.51 24.86 26.76 31.05 22.95
Wire Gauge (AWG) 12 14 14** 16 18 *Transmiss **Transmor Note: 1.2 2. A 7.3.1	Inductance (μH) 10.13 10.50 63.45 351.70 10.85 11.20 ion Line mer Loop 0kHz, other p II inductance i II inductance i Primary Primary Primary	Quality Factor 19.68 15.61 11.59 1.77 11.57 8.11 arameters and quality cluded) arameters Resistance Capacitar Inductance	Inductance (μH) 35.22 35.96 89.16 853.20 36.68 37.37 s given for T ty factors in s c (OHMS) sce (PICOFA e (MILDHE	Quality Factor 29.88 24.06 14.11 4.90 18.10 12.84 able II Table III are ARADS) NRY'S)	Inductance (μH) 73.28 74.39 128.18 1433.69 75.46 76.50 apparent value = 1 = 10 = 5	Quality Factor 37.13 30.40 17.51 9.99 23.25 16.73 ues (i.e., the	Inductance (µ H) 123.14 124.62 179.61 1985.51 126.04 127.42 e effect of lo	Quality Factor 42.65 35.41 21.20 17.24 27.50 20.05	Inductance (µH) 184.00 185.85 242.96 2464.16 187.62 189.34	Qualii Facto 47.0: 39.51 24.86 26.76 31.09 22.95
Wire Gauge (AWG) 12 14 14** 16 18 *Transmiss **Transfor Note: 1. 2 2. A r 3. 1	Inductance (µH) 10.13 10.50 63.45 351.70 10.85 11.20 ion Line mer Loop OkHz, other p II inductance i sistance is in ransformer P. Primary Primary Seconda	Quality Factor 19.68 15.61 11.59 1.77 11.57 8.11 arameters Resistance Resista	Inductance (μH) 35.22 35.96 89.16 853.20 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 37.52 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 37.59 36.68 37.37 36.68 37.37 36.68 37.37 37.59 36.68 37.37 37.59 36.68 37.37 37.59 36.68 37.37 37.59 36.68 37.37 37.59 36.68 37.37 37.59 36.68 37.37 37.57 36.68 37.37 37.59 36.68 37.37 37.57	Quality Factor 29.88 24.06 14.11 4.90 18.10 12.84 able II Table III are RRADS) NRYS) FARADS)	inductance (μH) 73.28 74.39 128.18 1433.69 75.46 76.50 apparent value = 1 = 10 = 5 = 1 = 10	Quality Factor 37.13 30.40 17.51 9.99 23.25 16.73	Inductance (µ H) 123.14 124.62 179.61 1985.51 126.04 127.42 e effect of lo	Quality Factor 42.65 35.41 21.20 17.24 27.50 20.05	Inductance (µH) 184.00 185.85 242.96 2464.16 187.62 189.34	Qualii Facto 47.00 39.51 24.84 26.74 31.04 22.95
Wire Gauge (AWG) 12 14 14* 14** 16 18 *Transmiss **Transfor Note: 1. 2 2. A 7 3. 1	Inductance (µH) 10.13 10.50 63.45 351.70 10.85 11.20 ion Line mer Loop 0kHz, other p II inductance sistance is in ransformer P Primary Primary Seconda Seconda Primary Con Line	Quality Factor 19.68 15.61 11.59 1.77 11.57 8.11 arameters Resistand Capacitar Resistand Resistand Capacitar y Resistand Capacitar y Resistand Second	Inductance (μH) 35.22 35.96 89.16 853.20 36.68 37.37 37 36.68 37.37 36.68 37.37 37 36.68 37.37 37 36.69 36.68 37.37 37 36.68 37.37 37 37 37 37 37 37 37 37 36.68 37.37 37 37 37 37 37 37 37 37 37 37 37 37 3	Quality Factor 29.88 24.06 14.11 4.90 18.10 12.84 able II Table III are RRADS) NRYS) FARADS) aio	inductance (μH) 73.28 74.39 128.18 1433.69 75.46 76.50 apparent value = 1 = 10 = 5 = 1 = 10 = 5 = 1 = 10 = 5	Quality Factor 37.13 30.40 17.51 9.99 23.25 16.73	Inductance (µ H) 123.14 124.62 179.61 1985.51 126.04 127.42 e effect of lo	Quality Factor 42.65 35.41 21.20 17.24 27.50 20.05	Inductance (µH) 184.00 185.85 242.96 2464.16 187.62 189.34	Qualin Factor 39.51 24.84 26.76 31.04 22.95
Wire Gauge (AWG) 12 14 14** 16 18 *Transmiss **Transfor Note: 1. 2 2. A 7 3. 1	Inductance (µH) 10.13 10.50 63.45 351.70 10.85 11.20 ion Line mer Loop 0kHz, other p 11 inductance is in ransformer P Primary Primary Primary Seconda Primary Core Los Coupling	Quality Factor 19.68 15.61 11.59 1.77 11.57 8.11 arameters Resistand Capacitar Resistand Resistand Capacitar y Resista y Capacit to Second s Resistan Coefficiento S Resistan Coefficiento S Resistan S Resistan	Inductance (µH) 35.22 35.96 89.16 853.20 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 46.00 50 50 50 50 50 50 50 50 50 50 50 50 5	Quality Factor 29.88 24.06 14.11 4.90 18.10 12.84 able II Table III are RRADS) NRYS) FARADS) atio	inductance (μH) 73.28 74.39 128.18 1433.69 75.46 76.50 apparent value = 1 = 10 = 5 = 1 = 10 = 5 = 10 = 5 = 100 = 5 = 99	Quality Factor 37.13 30.40 17.51 9.99 23.25 16.73 wes (i.e., the 200	Inductance (µ H) 123.14 124.62 179.61 1985.51 126.04 127.42 e effect of lo	Quality Factor 42.65 35.41 21.20 17.24 27.50 20.05	Inductance (µH) 184.00 185.85 242.96 2464.16 187.62 189.34	Qualin Factor 39.51 24.84 26.76 31.04 22.95
Wire Gauge (AWG) 12 14 14** 16 18 *Transmiss **Transfor Note: 1.2 2. A 7.3. 1	Inductance (µH) 10.13 10.50 63.45 351.70 10.85 11.20 ion Line mer Loop 0kHz, other p II inductance is in ransformer P Primary Primary Seconda Primary Core Los Coupling Primary	Quality Factor 19.68 15.61 11.59 1.77 11.57 8.11 arameters Resistand Capacitar Nesistand Capacitar y Capacit y Resistand y Capacit to Second to Second to Second to Second to Second to Second to Second to Second	Inductance (µH) 35.22 35.96 89.16 853.20 36.68 37.37 37 36.68 37.37 36.68 37.37 36.68 37.37 37 36.68 37.37 37 36.68 37.37 37 36.68 37.37 37 36.69 36.69 37.37 37 37 37 36.69 37.37 37 37 37 37 36.68 37.37 37 37 37 37 37 37 37 37 37 37 37 37 3	Quality Factor 29.88 24.06 14.11 4.90 18.10 12.84 able II Table III are ARADS) (NRY'S) FARADS) atio) ance (PF)	inductance (μH) 73.28 74.39 128.18 1433.69 75.46 76.50 apparent value = 1 = 10 = 5 = 1 = 10 = 5 = 10 = 5 = 10 = 5 = 10 = 5 = 10	Quality Factor 37.13 30.40 17.51 9.99 23.25 16.73 wes (i.e., the 000	Inductance (µ H) 123.14 124.62 179.61 1985.51 126.04 127.42	Quality Factor 42.65 35.41 21.20 17.24 27.50 20.05	Inductance (μH) 184.00 185.85 242.96 2464.16 187.62 189.34	Qualii Facto 47.0. 39.5 24.86 26.76 31.05 22.95
Wire Gauge (AWG) 12 14 14* 14** 16 18 *Transmiss **Transfor Note: 1.2 2. A 7 3. 1	Inductance (µH) 10.13 10.50 63.45 351.70 10.85 11.20 ion Line mer Loop OkHz, other p II inductance is sistance is in ransformer P Primary Primary Seconda Primary Core Los Coupling Primary Transmission	Quality Factor 19.68 15.61 11.59 1.77 11.57 8.11 arameters Resistand qualiation cluded) y Resistand Capacitar yn Resistand Capacitar yn Resistand y Capacit to Second y Capacit to Second to Second	Inductance (µH) 35.22 35.96 89.16 853.20 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 36.68 37.37 37 36.68 37.37 36.68 37.37 36.68 37.37 37 36.68 37.37 37 36.68 37.37 37 36.68 37.37 36.68 37.37 37 36.68 37.37 37 36.68 37.37 37 36.68 37.37 37 36.69 36.68 37.37 37 36.69 36.69 37.37 37 36.69 37.37 37 37 37 37 36.69 37.37 37 37 37 37 37 37 37 37 37 37 37 37 3	Quality Factor 29.88 24.06 14.11 4.90 18.10 12.84 able II Table III are RRADS) (NRY'S) FARADS) aito) ance (PF)	inductance (μH) 73.28 74.39 128.18 1433.69 75.46 76.50 apparent value = 1 = 10 = 5 = 1 = 10 = 5 = 10 = 5 = 10 = 5 = 10 = 5 = 10 = 5 = 10 = 240	Quality Factor 37.13 30.40 17.51 9.99 23.25 16.73 wes (i.e., the x00	Inductance (µ H) 123.14 124.62 179.61 1985.51 126.04 127.42	Quality Factor 42.65 35.41 21.20 17.24 27.50 20.05	Inductance (μH) 184.00 185.85 242.96 2464.16 187.62 189.34	Qualii Facto 47.0. 39.5 24.86 26.76 31.05 22.95
Wire Gauge (AWG) 12 14 14** 16 18 *Transmiss **Transfor Note: 1.2 2. A 7 3. 1	Inductance (µH) 10.13 10.50 63.45 351.70 10.85 11.20 ion Line mer Loop OkHz, other p Il inductance i sistance is in ransformer P Primary Primary Primary Seconda Primary Core Los Coupling Primary Transmission I resistance i sistance i Seconda	Quality Factor 19.68 15.61 11.59 1.77 11.57 8.11 arameters 8.11 Capacitar Mexistan Capacitar y Capacit y Capacit to Second to	Inductance (µH) 35.22 35.96 89.16 853.20 36.68 37.37 s given for T ty factors in s e (OHMS) ace (PICOFA e (MILLIHE nce (OHMS) ace (PICOFA) ace (PICOFA) s e (OHMS) ace (PICOFA) ace (PICOFA) ac	Quality Factor 29.88 24.06 14.11 4.90 18.10 12.84 able II Table III are RRADS) (NRY'S) FARADS) aito) ance (PF)	inductance (μH) 73.28 74.39 128.18 1433.69 75.46 76.50 apparent value = 1 = 10 = 5 = 1 = 10 = 5 = 10 = 240 2.5 2.5	Quality Factor 37.13 30.40 17.51 9.99 23.25 16.73	Inductance (µ H) 123.14 124.62 179.61 1985.51 126.04 127.42	Quality Factor 42.65 35.41 21.20 17.24 27.50 20.05	Inductance (µH) 184.00 185.85 242.96 2464.16 187.62 189.34	Qualii Facto 47.0. 39.5 24.8¢ 26.7¢ 31.0% 22.95
Wire Gauge (AWG) 12 14 14** 16 18 *Transmiss **Transfor Note: 1.2 2. A 7 3. 1	Inductance (µH) 10.13 10.50 63.45 351.70 10.85 11.20 ion Line mer Loop OkHz, other p Il inductance i sistance is in ransformer P Primary Primary Primary Seconda Primary Core Los Coupling Primary Transmission i engle • resistan • inducta	Quality Factor 19.68 15.61 11.59 1.77 11.57 8.11 arameters and quali- lickuded) arameters Resistanc (capacitarameters Resistance (capacitarameters) respectively to Second to Se	Inductance (µH) 35.22 35.96 89.16 853.20 36.68 37.37 s given for T ty factors in s e (OHMS) ace (PICOFA) e (MILLIHE nce (OHMS) tance (PICOFA) ance (PICOFA) and	Quality Factor 29.88 24.06 14.11 4.90 18.10 12.84 able II Table III are ARADS) ENRYS) FARADS) atio	Inductance (μH) 73.28 74.39 128.18 1433.69 75.46 76.50 apparent valit = 1 = 10 = 5 = 1 = 5 = 10000 = 5 = 10000 240 2.5 0.020	Quality Factor 37.13 30.40 17.51 9.99 23.25 16.73 ues (i.e., the x00	Inductance (µ H) 123.14 124.62 179.61 1985.51 126.04 127.42	Quality Factor 42.65 35.41 21.20 17.24 27.50 20.05	Inductance (μH) 184.00 185.85 242.96 2464.16 187.62 189.34	Qualii Facto 47.0. 39.5 24.80 26.76 31.05 22.95

Traffic Detector Handbook

U.S. Department of Transportation Federal Highway Administration Office of Research and Development