Quick Site Installation Ver 230215_B

- Step 1 Verify Cabinet Power Supply operation and confirm compatibility ie., 240VACline or DC 12-48V supply or Battery
- Step 2 Ensure card modules are correctly aligned and secure in chassis.
- Step 3 Install Chassis & connect Earthing points Chassis & Field Termination Panel to cabinet earth.
- Step 4 Verify Loop feeder distance does not exceed 200mts.
- Step 5 Verify Loop feeder tail numbering corresponds to pavement position and electrical characteristics of each loop; Inductance, DC Resistance, nominal tuned frequency conform to specification.
- Step 6 Loop Layout paired loops are generally in sequence 1-2, 3-4, 5-6 & 7-8. It is good practice to have loops from a single card allocated to a specific traffic direction ie., Northbound, Inbound, etc. While it is not a desirable practice, it is permissible to lay loop tails associated with the same detector card in the same slot however under no circumstance should loop tails associated with different detector cards be installed in the same slot as this will cause 'X' talk. 'X'talk manifests as detector channels remaining in an actuated state.
- Step 7 Loop **Termination**. It is desirable to keep the shielding associated with Loop Feeder cable (ASNZS 2276.xx; Loop Feeder Cable) as close to the bared cable ends of the insulated wires located within the cable for maximum interaction protection when terminating the loop feeder cable into the Field Termination Panel connectors. Ensure loop feeder numbers correspond to designated terminal number. || || || || || || || || || || || Step 7 Confirm F P terminals 18 connect to Loop Input 1 via flat twisted IDC cable.

Step 8 Switch 'ON' LVD Chassis

Note: There may be Power Supply variations and detection card variations Refer to following Schedule for base operation indication

Initial Observation

The following procedure is a basic visual inspection test without the use of a PC. For a more detailed test, please refer to the product manual and LVD console Instruction.

Step	Test	Result	
1	Switch on LVD and wait 5	Yes	Power supply is operating correctly.
	seconds.	No	Power supply is faulty.
	Are +5V and +12V LEDs		
		N7	
2	Is Supervisor PB LED lit?	Yes	Power supply to Supervisor link is ok.
		INO	faulty
3	Is Supervisor HB LED	Yes	Supervisor program is operating
5	flashing?	105	correctly.
	<u> </u>	No	Supervisor program is faulty –
			reprogram Supervisor and repeat test.
		No	Supervisor hardware is faulty.
4	What is the status of	On	Detector program is operating correctly.
	Supervisor	Flash	Detector program is faulty – reprogram
	C1 / C2 / C3 / C4 LED?		Detector and repeat test.
		Flash	Detector hardware is faulty.
		Flash	Supervisor communications hardware is
		Off	faulty.
5	Do Supervisor DV and TV	Vas	Detector is not used.
3	LEDs flash during Host	No	Host communications have failed:
	communication?	INU	- Host port haud rate is set to incorrect
	communication		value
			- Host port address is not set to 1.
			- Ethernet port is not setup correctly.
6	Press retune for each	Yes	Loop sensor is faulty – test loop.
	Detector	Yes	Detector has faulty channel.
	Are any Detector loop	Yes	Number of Lanes is set incorrectly,
	LEDs (L1 – L8) flashing?		turning on loops that shouldn't be on.
7	Observe L1 –L8 RED Leds		Flash when detection occurs
			Sequence – RED leds followed by
0		V	yellow.
δ	Do the correct Detector	res	Detector and loop are operating
	I EDg light when a vehicle		aarraatly
	LEDs light when a vehicle	No	correctly. Detector has a faulty channel

Initial Observation COMPLETE – refer to Project SAT for complete site evaluation.

Further References:

XL-1000 Installation and Usage Manual DrB.pdf

XL-1000 Instruction_configuring_Hyperterminal.pdf

XL-1000 Instruction LVDconsole.pdf

Engineering Notes:

100.8Publication Date 2011:03:03RevA100.9Publication Date 2012:03:03RevA

\100.8 (ENGNOTE_Loop_Detector_Xtalk.pdf)

\100.9 (ENGNOTE_Loop_Feeder_length.pdf)

Site Acceptance Test

'PROJECT' SAT_'x' – where 'project' refers to job description